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INTRODUCTION 

Throughout history, humanity has distinguished itself from other living organisms on 

the planet by constantly improving its specific skills. These skills are a part of all aspects 

of life and activity. Humans create and develop their tools for work, their ways of 

thinking, and their methods of communication. In the beginning, human individuals 

used mainly verbal methods of communication and relatively simple, monochromatic 

pictures. As their skills and knowledge developed, they created better and more 

advanced mechanisms for gathering information and communicating with each 

other. So, in our modern day, we use electronic means of communication, information 

storage, and processing on a daily basis.  

Throughout the centuries, people have realized that the information they possess, 

its reliable storage and preservation, plays an extremely important role in their 

individual and social advantage compared to others. For this reason, means have 

been and are being created to provide reliable and secure protection of information 

with different volumes and structures. The most widely used method of protecting 

information is encryption. Cryptography (from Greek kryptos - "hidden" and graphein 

"write") studies the principles, means, and methods of transforming data to conceal its 

semantics or to protect against unauthorized access. It is also a tool used to protect 

against changes in the content or structure of information by individuals whose access 

to the actual content should be restricted.  

This is achieved through a mathematical algorithm where the data undergoes a 

change based on at least one secret parameter called a "key" (cryptographic key), 

known only to the participants in the communication or the people to whom access to 

it is delegated.  

The development of technology, particularly electronics, in the last century has 

necessitated the use of cryptography at the individual level. Today, people use 

technical electronic devices in their daily activities, where the implementation of 

cryptographic algorithms and methods for protecting information is mandatory and 

already considered a natural occurrence for these protective means to be used in 

almost all areas of human activity. 

Two main groups of algorithms exist in cryptography, based on their mathematical 

foundations and implementation. Their distinction is based on the size, characteristics 

of the key, and the way it is used to protect data. These two groups of algorithms are: 

• Symmetric Key Cryptographic Algorithms. 

• Public Key Cryptographic Algorithms. 

The widespread use of public key cryptography in the everyday life of a modern 

person, with the goal of securely and reliably protecting personal, public, social, and 

state data, transforms it into a significant factor for the functioning of society, individual 

countries, and the world as a whole.  

All that has been stated so far proves the great importance of cryptography 

systems for protecting information, through the use of a public key encryption 

algorithms. The development of the dissertation work is motivated by the existing issue 

of determining the level of resilience in the functioning of public key cryptography 

systems. 
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Proofs of vulnerabilities in public key cryptography systems used and implemented 

are increasingly being published in the internet. Here, the question arises as to how 

many of the established vulnerabilities are officially reported so they can be 

remediated. With the growth of information technology, large companies, government 

organizations, and hacker groups (which may pose as ill-wisher) aim to secure easier 

unauthorized access to information that is not their own. The most unobtrusive and 

easiest way to achieve this is through compromising cryptography systems. Ill-wishers 

strive to achieve this by using previously created back doors (algorithmic, 

mathematical, etc.) to access private keys (used in public key cryptography), which 

can lead to the revelation of explicit information (the original form of protected 

information). 

These reasons for the existence of the possibility of unauthorized access to restore 

private keys in a public key cryptography system assume that their mathematical 

foundations and functioning principles should be evaluated. It is necessary to 

summarize and analyze existing hardware tools and software libraries used for 

cryptographic purposes in practice. The indicators and parameters of the studied 

cryptography tools must be analyzed and evaluated, and based on the results, it must 

be determined if there is a hidden possibility of them being compromised through the 

rapid and easy recovery of the private key, which directly affects the resilience of the 

functioning of cryptography systems using public key cryptography. 

The objective of this work is to examine and analyze the most widely applied 

algorithms and approaches used in public key cryptography for the purpose of 

protecting information. To assess the degree of their resilience against attacks related 

to the presence of weaknesses that may exist as a result of deliberately created 

vulnerabilities in the core cryptographic primitives of the respective algorithm. To 

develop models that serve as a basis for demonstrating the probable possibility of the 

existence or non-existence of vulnerabilities of this kind. 

The dissertation work is structured: introduction, three chapters, conclusion, 

literature, list of publications related to the dissertation, list of terms used, mathematical 

symbols and basic functions, list of figures. 
In the first chapter, the mathematical and algorithmic foundations of public key 

cryptography are examined, its application and areas of use are described, the 

standards and requirements applied in practice are systematized for systems using 

public key cryptography. An assessment is made of the problems associated with the 

resilience of the functioning of cryptographic systems with public key cryptography 

and the following are formulated: the aim and objectives in carrying out the scientific 

research work being developed. 

In the second chapter, two solution models are proposed. The first is implemented 

to achieve higher efficiency and reliability in determining the divisibility of a number by 

using the Miller-Rabin probabilistic algorithm. The second solution model presents the 

mathematical possibility for a more efficient implementation of the Silver-Pohlig-

Hellman algorithm, which is used to attack the most widely used cryptographic 

algorithm in public key cryptography, RSA, at the present time. 

In the third chapter, the mathematical foundations and model of a new approach 

for implementing a Kleptographic algorithm are described. The following is described: 

its practical implementation, generation of public key domains, assessment of its 
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technical implementation parameters, and a comparative analysis between the 

proposed algorithm and other existing Kleptographic algorithms. In this chapter, an 

analysis and evaluation of the possibility of the existence and use of Kleptography in 

practical applied systems based on public key cryptography are made. Conclusions 

are drawn and a mechanism is proposed to avoid vulnerabilities based on 

Kleptographic attacks on RSA-based systems. 

In the conclusion, the contributions of the dissertation are described, as well as 

directions for future work. 

The following limitations were adopted to fulfill the main tasks in the dissertation 

work: 

• Only the RSA algorithm used in public key cryptography has been examined and 

analyzed for resilience. 

• Only the possibilities of influencing the resilience of public key cryptographic 

systems related to RSA key generation and the attack possibilities for breaking it 

have been examined, analyzed and evaluated. 

CHAPTER ONE 

PUBLIC KEY CRYPTOGRAPHY: FUNDAMENTALS, ALGORITHMS, 

APPLICATIONS AND AREAS OF USE. RESILIENCE OF OPERATION. 

Public key cryptography is a means of protecting information that is based on 

extremely difficult mathematical problems, the difficulty of which remains high even in 

the presence of rapidly functioning and well-organized modern computing technology 

in large clusters. To achieve this goal, mathematical operations that are part of the 

"Number Theory" section are used in the implementation of cryptographic algorithms 

that fall within this area of cryptography [8, 41]. 

1.1 The foundation of public key cryptography. Encryption algorithms. Areas of 

use. Resilience during operation. 

The foundation for creating algorithms in public key cryptography is the following 

hard-to-solve mathematical problems: "Factorization of large numbers into prime 

factors" (Number Factorization), "Computing the discrete logarithm in finite fields" 

(Discrete Logarithm in Finite Field DLP), and "Computing the elliptic curve discrete 

logarithm" (Elliptic Curve Discrete Logarithm Problem - ECDLP). The mathematical 

primitives used for the purposes of public key cryptography are related to calculations 

and operations in mathematical structures of the multiplicative and additive Abelian 

groups type [74, 95]. 

1.1.1 Foundation of public key cryptography. Encryption algorithms. 

Computing the discrete logarithm in finite fields is a problem where if 𝑎 is a primitive 

element (generator) of the finite field 𝐹𝑝 and 𝑑 is an arbitrary element of 𝐹𝑝 (𝑑 ∈ 𝐹𝑝), it is 

difficult to calculate 𝑥 given 𝑑, 𝑎 and 𝑝, such that: 𝑑 = 𝑎𝑥 𝑚𝑜𝑑 𝑝. This problem is 

computationally difficult because there is a periodicity and there are a large number 

of values of 𝑥 ∈ 𝑍 for which the equation: 𝑑 = 𝑎𝑥 𝑚𝑜𝑑 𝑝 holds true. This is due to the fact 

that the equation: 𝑎𝑥 = 𝑎𝑥+𝑘(𝑝−1) 𝑚𝑜𝑑 𝑝 holds true for all  𝑘 ∈ 𝑍. 

The following algorithms are presented in this subsection of the dissertation: 
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Algorithm of Diffie-Helman … 

Algorithm of ElGamal … 

RSA … 

DSA … 

Elliptic Curve Cryptography (ECC) … 

1.1.2 Use areas of public key cryptography. 

Biggest boost for the adoption of public key cryptography is the development of 

technologies used in the Internet. This is logical and due to the fact that there is an 

increasing need for secure information exchange between unknown parties in 

communication. Security that reaches desired levels of safety is achieved through the 

use of a combined approach that uses public key cryptography for digital signing or 

protection of cryptographic keys which are used in symmetric key cryptography. 

The storage of cryptographic keys used in public key cryptography is achieved by 

building a suitable organization and infrastructure. Such a form of organization is called 

a "Public Key Infrastructure" (PKI) [100, 101, 112]. In it, the keys are stored in the form of 

digital certificates.  

The goal of PKI is to facilitate secure electronic transfer of information for a range 

of network activities such as e-commerce, online banking, confidential email and 

many others. PKI is required for activities where passwords are an inadequate method 

of authentication and more stringent proof of identity of the parties involved in the 

communication and validation of the transferred information is sought.  

The PKI cryptography is an agreement that links public keys to their respective 

identities (such as people and organizations) and serves as a secure and reliable 

storage of issued digital certificates. The binding is established through the process of 

registration and certificate issuance by a certificate authority (CA). Every registration 

authority is responsible for one or more of the following functions:  

• Identification and authentication of certificate candidates. 

• Approval or rejection of certificate applications 

• Initiating the revocation or suspension of certificates under certain circumstances 

• Processing requests from subscribers for revocation or suspension of their 

certificates 

• approve or reject requests from subscribers to renew their certificates 

The content and structure of a digital certificate is standardized using X.509 (the 

"International Telecommunication Union" - ITU standard). Each certificate must be 

signed only by one entity (the CA). Each CA has its own unique root certificate. There 

may be a hierarchical relationship between different CAs.  

One of the most common uses of digital certificates is to authenticate an 

electronic page. This principle arose as a means of combating fraud in the internet 

space, implemented through fake internet pages created for the purpose of gathering 

personal or sensitive information. 

In order to ensure the best security in this area, some CA's have created and joined 

the "Certificate Transparency organization" (CTo) [87, 102, 114]. The CTo brings 

transparency to the SSL/TLS system that maintains the network. The SSL/TLS protocols 

implement cryptographic operations through the use of public cryptography. 
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Using CTo statistics (Figure 1), we can gain a real understanding of the number of 

certificates used in the internet space. 

As of December 2021, there are over hundreds of millions of certificates. The 

following two figures from the global statistics are noteworthy:  

• Number of newly generated certificates - 256 788 certs/hr 

• Number of expired certificates - 239 840 certs/hr 

The difference in the quantity is 16,948 certificates per hour in favor of the newly 

issued certificates [7, 89]. 

 
Fig. 1 

Number of digital certificates in real use 

https://ct.cloudflare.com/ 

One aspect of security in the internet space is the use of digital certificates to sign 

software code. Another important use is the safe provision of updates and corrections 

to existing software. Operating systems like Windows, Mac OS X, and most Linux 

distributions provide updates by signing the code to ensure that third parties cannot 

deliberately spread code that would compromise the security of various electronic 

systems. Digitally signed code is a means of verification, even if it is delivered by a third 

party. 

Certification based on digital certificates is the answer to preventing fraud in 

machine-to-machine communication. Therefore, organizations such as banks and 

other financial institutions can communicate with each other internally and build 

trusted communications between them, ensuring that no fraudulent systems or 

malicious software can take control over their or shared infrastructure. 

The number of governments around the world that are introducing electronic 

systems for registering and digitally identifying their citizens in national identification 

systems is increasing. The reasons for this are to improve access to services, national 

security, combat corruption and others.  

The mutual recognition of digital signatures in the European Union allows for the 

conclusion of agreements and trade deals between governments and/or between 

companies. The Regulation of Electronic Identification and Trusted Services (eIDAS 

910/2014/EC) simplifies and standardizes the identification data, including digital 
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identities and digital and electronic signatures. It creates a "single digital market" to 

ensure secure digital transactions between EU member states and countries with which 

they have international relations. 

In general, the fields of application and use of public cryptography can include: 

secure and safe communication in the internet environment, protection of personal 

identity, software security, secure communication in the growing machine-to-machine 

communication, digital identity of the population and many others. 

As of December 2021, the adoption rate of RSA is approximately 93%. This result is 

based on statistics obtained through the verification of root certificates in the 

distributions of major operating systems (Windows, Linux/Android, and MAC OS), as well 

as statistics provided by CTOs, as shown in Figure 2. 

 
Fig. 2 

Ratio between RSA and ECDSA based digital certificates in use 

https://ct.cloudflare.com/ 

1.1.3 Keys used in public cryptography. Key generation, standards and the risks for the 

cryptographic system resilience. 

For every cryptographic system, one of the most important elements of security is 

the user key that is used to encrypt information. This is why the key generation process 

is always an important stage in data protection. The influence this process has on the 

security and resilience of public-key cryptographic systems is huge. The questions 

related to the resilience research of cryptographic systems using public cryptography 

are related to the processes of generating and storing the private keys used by the 

users [10, 24, 30, 31, 37, 67]. If a cryptographic system allows for the generation and use 

of cryptographic keys that can easily be compromised, it is considered unstable [75, 

76, 78]. 

The large extent of the use of RSA in practice, highlighted as a result in the previous 

subheading, is the reason for the research process on the resilience of public-key 

cryptography systems to be focused on evaluating the resilience of RSA. 

It is important for the proper and stable functioning of public-key cryptography-

based cryptographic systems to apply standards in the processes related to key 

generation [92, 110]. The generation of RSA cryptographic system keys is regulated by 

standards that are applied in the process of creating the two parts of the key [84, 90, 

96]. 

The two standards most widely used in practice are developed by the National 

Institute of Standards and Technology (NIST) in the US and the European 

Telecommunications Standards Institute (ETSI), which specify a series of steps and 

conditions that numbers composing the key used in RSA cryptographic systems must 

comply with. 
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In practice, key generation is implemented through software using computer 

configuration applications or a specialized hardware module with a communication 

interface. The checks for compliance with the above-mentioned standards are 

performed in specialized laboratories and each key generation tool has a validity 

period for use. 

Despite the requirements of the standards and the strict control over the work of 

hardware devices and software applications used for encryption, there is a risk that the 

key generation process may be compromised.  

In RSA-based cryptographic systems, it is a crucial component that 𝑝 and 𝑞 are 

chosen with sufficient randomness to guarantee the security of the public key. 

Decomposing a large 𝑁 modulo to obtain 𝑝 and 𝑞 is not possible under normal 

circumstances. However, if the keys are generated with poor randomness (not fully 

random factors generated according to a completely random principle), then it is 

possible that two RSA public keys will share a factor. And if enough keys are generated, 

the resulting modular numbers 𝑁𝑖 can be decomposed by searching for their common 

divisor (𝐺𝐶𝐷(𝑁𝑖, 𝑁𝐽) 𝑖 ≠ 𝑗  𝑁𝑖 ≠ 𝑁𝐽) [46, 108]. 

In 2012, a group of researchers including Lenstra [46] conducted a study in which 

they analyzed approximately 6.2 million digital certificates that are widely used in the 

internet space and found that about 4.3% of them had shared factors. During the 

analysis of 45 million modulus values, elements of RSA keys, scanned between 2015-

2017 (from actually functioning digital certificates), using the first million small primes, 

192,709 keys were broken. This number corresponds to 344,055 different certificates in 

the original data set, or 0.56%. 

This statistics and analysis show a real problem in the principle and approach for 

generating factors for modular numbers used in certificates intended for RSA 

cryptographic systems. 

An example of a problem with a standardized and certified as functional 

hardware device or software product is the "Trusted Platform Module" (TPM) produced 

by Infineon. The problem with Infineon chips is discovered during operation, not 

certification. TPM modules are electronic chips that generate and store keys for 

cryptographic algorithms. In the specific example of chips produced by Infineon, 

affected chips are those with software versions: 4.0-4.33; 4.4-4.42; 5.0-5.61; 6.0-6.42; 7.0-

7.61; 133.0-133.32; 149.0-149.32. They are mainly used in computer configurations and 

affect the security of Windows and Linux operating systems. The most important aspect 

of the example is the manifestation of the vulnerability: "The vulnerability allows the 

recovery of a private key when only the public key is available". The National Security 

Agency (NSA) publication states that this vulnerability affects to a significant extent 

device used by the Department of Defense. (Department of Defense - DoD) [81, 88, 

109]. 

There is another group of approaches for attacking RSA-based cryptographic 

systems that are most difficult to establish and it is difficult to assign them to any of the 

other classical categories of attacks. These are attacks that are based on pre-laid 

mathematical constructions, which only in a specific combination between the 

mathematical model of the algorithm and the generated key create a vulnerability 

[40, 58]. The group of such types of attack methods is named "Kleptographic Attack 

Methods". The goal of kleptography is to create the conditions for an attack, through 
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which the realization of a vulnerability is possible only from the knowledge of the way 

the weakness functions in the mathematical and cryptographic primitives of the 

algorithm. The term "kleptography" was first proposed by Adam Young and Moti Yung 

in 1996 [3, 18, 19, 26]. One of their articles is entitled "Kleptography: Using Cryptography 

Against Cryptography" [20, 25, 39, 77]. 

At present, there is no strict classification of kleptographic attacks. This is due to 

the fact that there is no clear formal model of kleptographic mechanisms, and a wide 

spectrum of attacks against them is used. The general description of kleptography is a 

method that includes methods for constructing channels for secretly transmitting 

sensitive cryptographic information or developing cryptographic primitives with partial 

violations of cryptographic properties under certain conditions.  

One of the striking examples known to the world community in 2021 is the secret 

agreement between the United States and Germany, which began after the end of 

World War II. The countries agreed and gained ownership of a Swiss company (Crypto 

AG), which developed and commercially offered cryptographic means to 

governments worldwide (over 60 countries). Part of the functionality of Crypto AG's 

cryptographic means allowed the familiar countries to quickly extract cryptographic 

keys and thus access the explicit data [80]. 

In this part of the dissertation work, the algorithm by Yung and Young is presented. 

A Kleptographic Attack algorithm by Young and Yung Against RSA … 

1.2 Goals and objectives of the dissertation work 

The widespread use of the RSA cryptographic algorithm, as well as the presence 

of assumptions and examples demonstrating the potential for risk affecting its 

resilience, led to the development of a doctoral thesis aimed at exploring potential 

ways to create models and solutions that could affect its resilience and security of 

encrypted data. The existence of models and solutions that weaken or strengthen the 

resilience of RSA will greatly affect the security of encrypted data that is exchanged 

daily by millions of correspondents. 

As a result of the analysis carried out, the goal of the doctoral thesis is as follows: 

to propose solution models that allow for the checking of existing objective 

opportunities that affect the resilience of cryptographic systems based on the RSA 

cryptographic algorithm. 

The following tasks must be solved in order to achieve the set goal: 

1) Analyze the algorithms used to evaluate the divisibility of a number, examine 

the principles of operation of the most widely used algorithms in this field. 

Evaluate their weaknesses. Analyze the possibility of solutions that would lead to 

increased efficiency and reliability of the results obtained and, if possible, to 

increase the speed of the divisibility evaluation process. 

2) Existing RSA attack algorithms should be analyzed and the possibility of creating 

a formal model to increase the efficiency of prime factorization should be 

evaluated. 

3) By analyzing the mathematical constructions of encryption algorithms and those 

for their attack, to confirm or reject the possibility of a real threat to the stability 

of the RSA function by creating a weakness in the process of generating the 

private and public key. 
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4) Create a functional model of a practical software implementation, based on 

which to analyze the efficiency of the results. 

1.3 Conclusions. 

• The application of algorithms for solving problems in number theory increases the 

complexity of implementing attacks against cryptographic primitives used in 

public cryptography. 

• The most widely used encryption algorithm in practice is RSA, which uses public 

key cryptography. The existence of a vulnerability that could compromise the 

stability of a cryptographic system using RSA would threaten the security of a 

large number of communication and information systems and, as a result, would 

negatively impact large social groups as a whole. 

• The two main approaches that provide a real chance of achieving an effective 

attack against RSA are related to the principles and methods of creating 

cryptographic keys. This includes the degree of reliability that the number 

factorization algorithms provide. The second approach is related to the presence 

of hidden mechanisms by the RSA user that can easily compromise the private 

key, thus having a negative impact on the resilience of RSA. 

• Based on everything discussed so far, including the theory on which public-key 

cryptography algorithms are based, the ways they are used in practice, the 

principles and methods for generating and evaluating prime numbers as part of 

the keys intended for encryption in public cryptography, it can be concluded 

that there are risks to the resilience of public cryptography that can affect the 

security of encrypted data.  

• The technological development of electronic devices is not the only factor 

contributing to the risks of unstable functioning of RSA-based cryptographic 

systems. The potential existence of the possibility of introducing kleptographic 

crypto-mechanisms may have a serious negative impact on all spheres that use 

encryption algorithms based on problems related to the decomposition of large 

prime numbers. 

CHAPTER TWO 

MODELS OF SOLUTIONS IMPACTING THE RESILIENCE OF RSA. 

Two solution models affecting the stability of RSA-based cryptographic systems are 

considered in this chapter. The first one is related to creating a divisibility assessment 

model for numbers, aimed at improving the results when using the Miller-Rabin 

algorithm. The second solution model implements the idea of a more efficient attack 

on RSA-based cryptographic systems by using the attack algorithm proposed by Silver-

Pohlig-Hellman [83, 86]. 

2.1 Solution Model Allowing for Improving the Estimation of Number Divisibility 

when Using the Miller-Rabin Algorithm 

In public key cryptography, prime numbers are of utmost importance in achieving 

high security and reliable protection of encrypted information. They are the 

cornerstone of every public key used in the implementation of the RSA algorithm. That 
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is why this part of the dissertation work will focus on some important algorithmic aspects 

in the field of number theory (“Primality Tests”). This is done with the aim of gaining 

greater clarity on the relationship between the proposed model, which is meant to 

complement one of the most widely used algorithms in practice, the Miller-Rabin. 

The ability to reliably determine the primality of a number has great and important 

significance for the security of encrypted data and the stability of cryptographic 

systems that use public keys [47, 48, 49]. To achieve the goals of cryptography, the size 

of the prime numbers used is very large, in the order of hundreds of digits in decimal 

form, which is equivalent to thousands of bits in binary form.  

The determination of the divisibility of a number is a question that has occupied 

mathematicians since antiquity. In the beginning, attempts were made to synthesize 

and formulate formulas for calculating prime numbers as a function of input 

parameters, but with the development of number theory, it was established that there 

is no unique mathematical apparatus of functions that definitively applies to all existing 

prime numbers [44, 63]. As a result of this fact, the only possible approach is the 

application of an algorithm to check whether a number is divisible by composite 

factors or not (factors other than 1 and the number itself). 

In this field, there are practically two main groups of algorithms: deterministic and 

probabilistic. Which group a given algorithm for determining the divisibility of a number 

belongs to depends on the degree of certainty of the answer. 

Probabilistic algorithms 

The probabilistic algorithms created over the years are numerous, and each one 

is characterized by an evaluation speed for divisibility that is multiple times faster than 

any deterministic algorithm. The probability of one number being evaluated as 

composite, even if it is actually prime, will not affect the security of protected data, as 

it will be disregarded for key participation. Unfortunately, the characteristic error of 

these algorithms is that composite numbers are determined as prime. If a large number 

𝑝 with a dimension of several thousand bits is evaluated as prime and is actually 

composite, a false assumption will be made about the size of the field 𝐹𝑝, in which all 

arithmetic, used in the encryption process, was implemented [9]. This in turn creates a 

scenario where if an adversary establishes divisibility of  𝑝 and decomposes the number 

into prime factors, they will successfully carry out an attack against RSA. 

The most widely used probabilistic algorithm in all modern systems that implement 

public cryptography is the "Miller-Rabin Primality Test" [82, 97]. 

The Miller-Rabin algorithm is based on the third approach, to find the number 𝑥 for 

which the following are satisfied: 

 
𝑥2 ≡ 1 𝑚𝑜𝑑 𝑝 и 

𝑥 ≢ ±1 𝑚𝑜𝑑 𝑝 
(5) 

The Miller-Rabin algorithm is based on a third approach, to find a number 𝑥 such that 

it is called a witness for divisibility. 

The principle of the idea for a solution model that allows for the improvement of 

results in the most widely used algorithm in practice for determining the divisibility of a 

number, that of Miller-Rabin, has been developed and presented at the DIGILIENCE 

2020 conference (Varna) and published in the international publication "Information & 

Security: An International Journal" [71]. 
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The solution model considers the possibility of a transition between individual 

multiplicative subgroups 𝐺𝑖, formed by their own generator 𝑔𝑖 and the tested number 

𝑝. The idea for this implementation of the proposed solution model is based on a 

heuristic algorithm that uses a linear Diophantine equation: 

 𝑑𝑥 . 𝑑𝑦 − 𝑝. 𝑘 =  𝑑𝑧 (6) 

where 𝑑𝑖 = 𝑔𝑖  𝑚𝑜𝑑 𝑝 and every 𝑑𝑖  ∈ 𝑍𝑝 is an element of a ring with order #𝑂(𝑔,𝑝), obtained 

through a generator 𝑔. In the special case when 𝑑𝑥 = 𝑑𝑦
−1 𝑚𝑜𝑑 𝑝 the value of 𝑑𝑧 is 1. 

A heuristic approach has established that, with 𝑑𝑧 = 1 and the order of the group 

#𝑂(𝑔,𝑝) < 𝑝 − 1, a new value of 𝑑𝑥
∗
 can be obtained, for which (𝑑𝑥

𝑝
) ≠ (𝑑𝑥

∗

𝑝
). This new value 

of 𝑑𝑥
∗
, used as a generator, often forms a group with a set of elements that are 

completely or partially different from the set of elements in the group formed by the 

generator 𝑑𝑥. This can be achieved through the following iterations to find a suitable 

value of 𝑑𝑥
∗
: 

Input: 𝒅𝒙, 𝒑 

Output: 𝒅𝒙
∗ 

(1) 𝑑𝑥
∗ ←  𝑑𝑥 

(2) 𝑚 ← (
𝑑𝑥

𝑝
) 

(3) do 

(4) solve: 𝑑𝑥
∗ . 𝑑𝑦 − 𝑝. 𝑘 =  𝑑𝑧 

(5) 
𝑑𝑥

∗ ← 𝑘 

(6) while 𝑚 ≠ (𝑑𝑥
∗

𝑝
) 

In practice, in order to quickly determine the divisibility of a number through the 

use of Miller-Rabin, not all 𝑥 in the interval 1 < 𝑥 < 4. 𝑙𝑜𝑔2𝑝, are tested, but random values 

are selected. When working with large numbers, the probability of selecting a number 

from the same set generated by a specific generator 𝑔 is huge, which is a result of 

working with numbers that are very large in value and used for the modulus. This creates 

the possibility of permuting the set and the result of the test, through the Miller-Rabin 

algorithm, will be the same without contributing anything to the divisibility check. This is 

graphically shown in Figure 3.  

If a mechanism is used where, instead of random generated values (after the first 

generator), derivatives of the first or any subsequent generator are used, we can 

obtain a new ring which elements set does not completely match or has a partial 

intersection with the set of elements of the previous ones. On that way the sets of 

numbers which can be tested could even completely cover 𝑍𝑝. The number divisibility 

check can be carryout for a significantly smaller number of iterations by the Miller-Rabin 

method. This approach can greatly reduce the number of iterations required for the 

Miller-Rabin test and can greatly improve the efficiency of the algorithm. This model of 

iterative approach is illustrated graphically in Figure 4. 
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Fig. 3 

Depicts the result that the selected numbers to be checked (in a standard Miller-

Rabin test) are part of the same ring, which does not actually increase the 

credibility of the test 

 

 
Fig. 4 

Depicts the idea of using such numbers for verification using the Miller-Rabin test, 

which are part of rings with different composition elements  

The steps of an algorithm implementing the proposed solution model (whose idea 

is graphically depicted in Figure 4) are the following: 

Input: number 𝒑 

Output: COMPOSIT, PRIME 

(1) pick up small prime number 𝑞 such that 𝑎 = 𝑝 𝑚𝑜𝑑 𝑞 > 1  

(2) 𝑏 ← 𝑎𝑝−1 𝑚𝑜𝑑 𝑝 

(3) if 𝑏 > 1f  

(4) output:  COMPOSIT 

(5) 𝐽𝑎𝑐𝑜𝑏𝑖𝑆𝑦𝑚𝑏𝑜𝑙 = 1 

(6) 𝑓 ← (𝑝 − 1) 

(7) for each 𝑖 ∈ 0. .4 

(7.1) 𝑏 ← 𝑓 ⁄ 2 

(7.2) if 𝐽𝑎𝑐𝑜𝑏𝑖𝑆𝑦𝑚𝑏𝑜𝑙 = 1 

(7.3) 𝑔 ←  𝑮𝒆𝒕𝑷𝑹𝑼 (𝑎, 𝑝) 

(7.4) if 𝐽𝑎𝑐𝑜𝑏𝑖𝑆𝑦𝑚𝑏𝑜𝑙 = −1 

(7.5) 𝑔 ←  𝒈𝒆𝒕𝑵𝒐𝒕𝑷𝑹𝑼 (𝑎, 𝑝) 
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(7.6) 𝐽𝑎𝑐𝑜𝑏𝑖𝑆𝑦𝑚𝑏𝑜𝑙 ← (
𝑔

𝑝
) 

(7.7) if 𝐽𝑎𝑐𝑜𝑏𝑖𝑆𝑦𝑚𝑏𝑜𝑙 = 0 

(7.8) output:  COMPOSIT 

(7.9) 𝐿𝑒𝑔𝑒𝑛𝑑𝑟𝑒𝑆𝑦𝑚𝑏𝑜𝑙 ← 𝑔𝑏 𝑚𝑜𝑑 𝑝 

(7.10) if 𝐽𝑎𝑐𝑜𝑏𝑖𝑆𝑦𝑚𝑏𝑜𝑙 <>  𝐿𝑒𝑔𝑒𝑛𝑑𝑟𝑒𝑆𝑦𝑚𝑏𝑜𝑙 

(7.11) output:  COMPOSIT 

(7.12) while (𝐿𝑒𝑔𝑒𝑛𝑑𝑟𝑒𝑆𝑦𝑚𝑏𝑜𝑙 = 1) 𝑎𝑛𝑑 (𝑏 𝑚𝑜𝑑 2 = 0) 

(7.12.1) 𝑏 ← 𝑏 ⁄ 2 

(7.12.2) 𝐿𝑒𝑔𝑒𝑛𝑑𝑟𝑒𝑆𝑦𝑚𝑏𝑜𝑙 ← 𝑔𝑏 𝑚𝑜𝑑 𝑝 

(7.12.3) if (𝐿𝑒𝑔𝑒𝑛𝑑𝑟𝑒𝑆𝑦𝑚𝑏𝑜𝑙 > 1) 𝑎𝑛𝑑 (𝐿𝑒𝑔𝑒𝑛𝑑𝑟𝑒𝑆𝑦𝑚𝑏𝑜𝑙 < 𝑓) 

(7.12.4) output:  COMPOSIT 

(7.13) 𝑎 ← [𝑔 ∗  𝑚𝑜𝑑𝑓𝐾(𝑔, 𝑝)]  𝑚𝑜𝑑 𝑝 

(7.14) If 𝑎 = 1 

(7.15) 𝑎 ← 𝑔 

(8) output:  PRIME 

The pseudo code of the functions used in the algorithm is as follows: 

 function 𝑚𝑜𝑑𝐾 (in 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟, in 𝑚𝑜𝑑𝑢𝑙𝑜𝑛𝑢𝑚𝑏𝑒𝑟) 

(1) 𝑎 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟−1 𝑚𝑜𝑑 𝑚𝑜𝑑𝑢𝑙𝑜𝑛𝑢𝑚𝑏𝑒𝑟 

(2) return ⌊((𝑎 . 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟) − 1) 𝑚𝑜𝑑𝑢𝑙𝑜𝑛𝑢𝑚𝑏𝑒𝑟⁄ ⌋ 
  

 function 𝑔𝑒𝑡𝑁𝑜𝑡𝑃𝑅𝑈 (in 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟, in 𝑚𝑜𝑑𝑢𝑙𝑜𝑛𝑢𝑚𝑏𝑒𝑟) 

(1) 𝑔 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 

(2) 𝑈 ← 𝑚𝑜𝑑𝑢𝑙𝑜𝑛𝑢𝑚𝑏𝑒𝑟 

(3) if (𝑔
𝑈

) =  −1 

(4) 𝑔 ← 𝑔2 𝑚𝑜𝑑 𝑚𝑜𝑑𝑢𝑙𝑜𝑛𝑢𝑚𝑏𝑒𝑟 

(5) 𝑖 ← 0 

(6) 𝑚 ← 𝑔 

(7) do 

(8) 𝑖 ← 𝑖 + 1 

(9) 𝑚 ←  𝑈 − 𝑚  

(10) 𝑚 ← 𝑚𝑜𝑑𝐾(𝑚, 𝑈)  

(11) if 𝑚 < 2 

(12) 𝑖 ← 0 

(13) 𝑚 ← 𝑚𝑜𝑑𝐾(𝑔, 𝑈) 

(14) 𝑔 ← (𝑚 + 𝑔)𝑔 𝑚𝑜𝑑 𝑈  

(15) while  (𝑔
𝑈

) ∈ 0. .1 

(16) return 𝑚 
  

 function 𝐺𝑒𝑡𝑃𝑅𝑈 (in 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟, in 𝑚𝑜𝑑𝑢𝑙𝑜𝑛𝑢𝑚𝑏𝑒𝑟) 

(1) 𝑔 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 

(2) 𝑈 ← 𝑚𝑜𝑑𝑢𝑙𝑜𝑛𝑢𝑚𝑏𝑒𝑟 

(3) if (𝑔
𝑈

) =  −1 

(4) 𝑔 ← 𝑔2 𝑚𝑜𝑑 𝑚𝑜𝑑𝑢𝑙𝑜𝑛𝑢𝑚𝑏𝑒𝑟 

(5) 𝑒 ← 𝑈 𝑚𝑜𝑑 5 

(6) if 𝑒 ∈ {2. .3} 

(7) return 5 . 𝑔  𝑚𝑜𝑑 𝑈 

(8) 𝑒 ← 𝑈 𝑚𝑜𝑑 6 
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(9) if 𝑒 = 5 

(10) return −3 . 𝑔  𝑚𝑜𝑑 𝑈 

(11) 𝑒 ← 𝑈 𝑚𝑜𝑑 8 

(12) if 𝑒 ∈ {3,5} 

(13) return 2 . 𝑔  𝑚𝑜𝑑 𝑈 

(14) if 𝑒 = 7 

(15) return −2 . 𝑔  𝑚𝑜𝑑 𝑈 

(16) 𝑖 ← 0 

(17) 𝑚 ← 𝑔 

(18) do 

(19) 𝑖 ← 𝑖 + 1 

(20) 𝑚 ←  𝑈 − 𝑚  

(21) 𝑚 ← 𝑚𝑜𝑑𝐾(𝑚, 𝑈)  

(22) if 𝑚 < 2 

(23) 𝑖 ← 0 

(24) 𝑚 ← 𝑚𝑜𝑑𝐾(𝑔, 𝑈) 

(25) 𝑔 ← (𝑚 + 𝑔)𝑔 𝑚𝑜𝑑 𝑈  

(26) while  (𝑔
𝑈

) ∈ 0. .1 

(27) return 𝑚 

2.2 Solution model allowing application of the Silver-Pohlig-Hellman algorithm 

without limiting conditions. 

Each type of attack against a cryptographic protection system is designed to 

provide itself with the necessary amount of information and through additional analysis 

and in most cases in combination with a serious mathematical apparatus to realize the 

extraction of explicit information. In very rare cases, this is achieved without extracting 

the encryption key. 

Public key algorithms are theoretically easier to attack than algorithms operating 

with symmetric keys because the ill-wisher easily receives a copy of the public key used 

to encrypt the information. Part of the ill-wisher's efforts are facilitated because the 

message largely gives information about the encryption algorithm used and the size of 

the key is known in advance. Public key algorithm attacks are categorized into two 

groups: key search attacks and analytical attacks [68]. 

Key search attacks are the more popular type of attack to use against public-key 

cryptographic systems because they are the easiest to understand. These attacks are 

realized by extracting the private key from the freely available public key [42, 56].  

Attacks on the public key system built on an RSA basis are carried out by trying to 

decompose the modular number 𝑁 into simple multipliers. This modular number is 

available to the attacker because it is the domain of both parts of the key (private and 

public). Once decomposed into multipliers the modular number 𝑁 , allows to easily 

calculate the private key. 

In this part of the dissertation, a model of solution of a system of congruent 

equations is proposed, which used in algorithms to restore the private key by efficiently 

decomposing a modular number  𝑁 allows the recovery of the private key 𝑑. This is 

possible for implementation in algorithms such as that of Silver-Pohlig-Hellman in which 

the solution of a system of congruent equations is needed. 

In this part of the dissertation, a presentation of the algorithm proposed by Silver-Pohlig-

Hellman is made. 
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Silver-Pohlig-Hellman algorithm … 

In the realization of the Pohlig-Hellman algorithm, the following classical algorithms 

are used: calculation of the largest total multiple, elevation of a degree in modular 

arithmetic (𝑧 = 𝑥𝑛 𝑚𝑜𝑑 𝑝), Calculation of an "inverse module" (𝑧 = 𝑥−1 𝑚𝑜𝑑 𝑝) and 

solution of a system of congruent equations. 

Solving a system of congruent equations 

To find a solution to systems of this kind, an algorithm known as the "Chinese 

theorem" has been applied for centuries, which is believed to have been created in 

the 2nd century BC by Sun Tzu. 

The limitation of applying the "Chinese Theorem" is that modular numbers must be 

coprime, which requires a complete decomposition of the order of the group into 

simple multipliers. This constraint can be successfully overcome if an algorithm is 

applied which allows solving a system of congruent equations without this limiting 

condition. An algorithm offering the ability to solve systems of congruent equations 

without the presence of limiting conditions was developed and proposed at the 

scientific conference "Multimedia Communications, Services and Security. MCSS 2020" 

[35]. 

The motivation for this research and development is related to two reasons: 1) it is 

possible to solve systems of congruence equations in cases where modular numbers 

are not coprime; 2) it is possible to implement a solution in systems for parallel 

computing of large numbers. 

In order to clarify the idea of this approach, we will derive a mathematical 

equation that will be the basis of this algorithm. 

If we are given a system of congruent equations: 

 

𝑥 ≡ 𝑟1 𝑚𝑜𝑑 𝑢1

𝑥 ≡ 𝑟2 𝑚𝑜𝑑 𝑢2

𝑥 ≡ 𝑟3 𝑚𝑜𝑑 𝑢3

.

.

.
𝑥 ≡ 𝑟𝑖 𝑚𝑜𝑑 𝑢𝑖

 

(7) 

and we express the first two equations as: 𝑥0 = 𝑟1 + 𝑘1. 𝑢1 и 𝑥0 = 𝑟2 + 𝑘2 . 𝑢2 we will have a 

solution of the smallest value. 𝑥0. This is achievable if we know the values of 𝑘1 and 𝑘2, 

where 1 ≤ 𝑘1 < 𝑢2 and 1 ≤ 𝑘2 < 𝑢1. The value of 𝑥0 will be a solution to the first two 

equations of the system. 

If we multiply both sides of the equations we get: 

 𝑥0
2 = (𝑟1 + 𝑘1. 𝑢1)(𝑟2 + 𝑘2. 𝑢2) (8) 

 𝑥0
2 =  𝑢1. 𝑢2. 𝑘1. 𝑘2 + 𝑘1. 𝑢1. 𝑟2 + 𝑘2. 𝑢2. 𝑟1 + 𝑟1. 𝑟2 (9) 

If we calculate by modulus 𝐴 the both sides of equation (9), where 𝐴 = 𝑢1. 𝑢2, we 

will obtain the next congruence: 

  𝑥0
2 ≡  (𝑢1. 𝑢2. 𝑘1. 𝑘2 + 𝑘1. 𝑢1. 𝑟2 + 𝑘2. 𝑢2. 𝑟1 + 𝑟1. 𝑟2) 𝑚𝑜𝑑 𝐴 (10) 

In this equation, the value of 𝑢1. 𝑢2. 𝑘1. 𝑘2 𝑚𝑜𝑑 𝐴 is equal to 0, hence: 

 𝑥0
2 ≡  (𝑘1. 𝑢1. 𝑟2 + 𝑘2. 𝑢2. 𝑟1 + 𝑟1. 𝑟2) 𝑚𝑜𝑑 𝐴 (11) 
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By task definition 𝑟1 + 𝑘1. 𝑢1 = 𝑟2 + 𝑘2 . 𝑢2, from where we can express 𝑘1 =
𝑘2.𝑢2+𝑟2−𝑟1

𝑢1
 

and substituted in the equation (11), from which it follows: 

 𝑥0
2 ≡  (

𝑘2. 𝑢2 + 𝑟2 − 𝑟1

𝑢1
 . 𝑢1. 𝑟2 + 𝑘2. 𝑢2. 𝑟1 + 𝑟1. 𝑟2)  𝑚𝑜𝑑 𝐴 (12) 

 𝑥0
2 ≡  (𝑘2. 𝑢2. 𝑟2 + 𝑟2

2 − 𝑟1. 𝑟2 + 𝑘2. 𝑢2. 𝑟1 + 𝑟1. 𝑟2) 𝑚𝑜𝑑 𝐴 (13) 

 𝑥2 ≡  [𝑘2. 𝑢2. (𝑟2 + 𝑟1) + 𝑟2
2] 𝑚𝑜𝑑 𝐴 (14) 

From the congruence (14) we can derive: 

 𝑥2 ≡  [𝑘2. 𝑢2. (𝑟2 + 𝑟1) + 𝑟2
2] 𝑚𝑜𝑑 𝑢1 (15) 

Since 𝑥0  ≡ 𝑟1 𝑚𝑜𝑑 𝑢1, therefore 𝑥0
2  ≡ 𝑟1

2 𝑚𝑜𝑑 𝑢1 we substitute 𝑧 = 𝑥2 = 𝑟1
2 𝑚𝑜𝑑 𝑢1 in 

congruence (15) and we obtain: 

 𝑧 ≡  [𝑘2. 𝑢2. (𝑟2 + 𝑟1) + 𝑟2
2] 𝑚𝑜𝑑 𝑢1 (16) 

Therefore, to calculate 𝑘2 the following Diophantine equation must be solved: 

 𝑏. 𝑘2 − 𝑢1. 𝑦 = 𝑧 − 𝑟2
2 (17) 

where 𝑏 = 𝑢2. (𝑟2 + 𝑟1). 

We use the smallest positive solution for 𝑘2 and put it in𝑥0 = 𝑟2 + 𝑘2 . 𝑢2 to obtain a 

solution for 𝑥0, which is the solution of the first two equations. Equation (17) always has 

a solution, because 𝑧 − 𝑟2
2 is always divisible by 𝐺𝐶𝐷(𝑏, 𝑢1). Proof of this is the derived 

congruent equation (16). 

Using equation (17) in the following algorithm, we can solve the whole system 

congruent equations (7). The algorithm is applicable to all cases regardless of whether 

the modular numbers 𝑢𝑖, 𝑢𝑗 (𝑖 ≠ 𝑗) are coprime. As a consequence, it is not necessary 

to decompose the 𝑢𝑖 into simple multipliers. This allows acceleration of the process for 

solving systems of congruent equations. 

Steps of the algorithm using the presented mathematical apparatus:  

Input: 𝑅𝑒𝑚𝑖𝑛𝑑𝑒𝑟𝑠 [𝑟0, 𝑟1, 𝑟2, … , 𝑟𝑛] 
𝑚𝑜𝑑𝑁𝑢𝑚𝑏𝑒𝑟𝑠 [𝑢0, 𝑢1, 𝑢2, … , 𝑢𝑛] 

Output: 𝑥0  - minimal value of 𝑥 

(1) 𝑢𝑛𝑖𝑞𝐿𝐶𝑀 ←  𝑢0 

(2) 𝑏𝑉𝑎𝑙𝑢𝑒 ←  𝑟0 

(3) for each  𝑖 ∈ 1. . 𝑛 

(4) 𝑚1 ← 𝑢𝑛𝑖𝑞𝐿𝐶𝑀 

(5) 
𝑢𝑛𝑖𝑞𝐿𝐶𝑀 = (𝑢𝑛𝑖𝑞𝐿𝐶𝑀 .  𝑢𝑖) 

(6) 𝑧 ←  (𝑏𝑉𝑎𝑙𝑢𝑒2 𝑚𝑜𝑑 𝑚1) − 𝑟𝑖
2 

(7) 𝑏 ← (𝑏𝑉𝑎𝑙𝑢𝑒 + 𝑟𝑖) . 𝑢𝑖 

(8) solve: 𝑏 . 𝑘2 − 𝑚1 . 𝑦 = 𝑧 

(9) 𝑏𝑉𝑎𝑙𝑢𝑒 ←  𝑚2 .  𝑚𝑖𝑛𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒( 𝑘2) + 𝑎2 

(10) output: 𝑥0 ← 𝑏𝑉𝑎𝑙𝑢𝑒 

The loop iterations of the proposed algorithm are equal to the number of 

equations in the system minus one. In this proposed algorithm, the values of numbers 

increase with each iteration. In the classical algorithm, all mathematical operations 
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must be performed with a binary number size close to the product of all modular 

numbers 𝑚𝑖. The only drawback of the algorithm described above is that if any pair of   

𝑢𝑖 и 𝑢𝑗 (𝑖 ≠ 𝑗) are not coprime numbers, then 𝑥 will not be the minimum solution value of 

the system. To overcome this shortcoming, the next algorithm was developed. 

Input: 𝑅𝑒𝑚𝑖𝑛𝑑𝑒𝑟𝑠 [𝑟0, 𝑟1, 𝑟2, … , 𝑟𝑛] 
𝑚𝑜𝑑𝑁𝑢𝑚𝑏𝑒𝑟𝑠 [𝑢0, 𝑢1, 𝑢2, … , 𝑢𝑛] 

Output: 𝑥0  - minimal value of the solution 𝑥 

(1) 𝑢𝑛𝑖𝑞𝐿𝐶𝑀 ←  𝑢0 

(2) 𝑏𝑉𝑎𝑙𝑢𝑒 ←  𝑟0 

(3) for each  𝑖 ∈ 1. . 𝑛 

(4) 𝑚1 ← 𝑢𝑛𝑖𝑞𝐿𝐶𝑀 

(5) 𝑔 ← 𝐺𝐶𝐷(𝑢𝑛𝑖𝑞𝐿𝐶𝑀, 𝑢𝑖) 

(6) 
𝑢𝑛𝑖𝑞𝐿𝐶𝑀 ← (𝑢𝑛𝑖𝑞𝐿𝐶𝑀 .  𝑢𝑖) 𝑑𝑖𝑣 𝑔 

(7) 
if (𝑢𝑖  > 𝑚1) 

(8) 
𝑚2 ← 𝑚1 

(9) 
𝑎2 ← 𝑏𝑉𝑎𝑙𝑢𝑒 

(10) 
𝑚1 ← 𝑢𝑖 

(11) 𝑎1 ← 𝑟𝑖 

(12) else 

(13) 𝑎1 ← 𝑏𝑉𝑎𝑙𝑢𝑒 

(14) 𝑚2 ← 𝑢𝑖 

(15) 𝑎2 ← 𝑟𝑖 

(16) 𝑧 ←  (𝑎1
2 𝑚𝑜𝑑 𝑚1) − 𝑎2

2 

(17) 𝑏 ← [(𝑎1 + 𝑎2) . 𝑚2] 

(18) solve: 𝑏 . 𝑘2 − 𝑚1 . 𝑦 = 𝑧 

(19) 𝑏𝑉𝑎𝑙𝑢𝑒 ←  𝑚2 .  𝑚𝑖𝑛𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒( 𝑘2) + 𝑎2 

(20) if (𝑏𝑉𝑎𝑙𝑢𝑒 𝑚𝑜𝑑 𝑚1  <>  𝑎1) 

(21) 𝑡 = 𝑎1 − 𝑏𝑉𝑎𝑙𝑢𝑒 

(22) 𝑤 = 𝑚2 .  𝑚𝑖𝑛𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒( 𝑘2) 

(23) solve: 𝑤 . 𝑛 − 𝑚1 . 𝑦 = 𝑡 

(24) 𝑏𝑉𝑎𝑙𝑢𝑒 =  𝑏𝑉𝑎𝑙𝑢𝑒 +  𝑤 . 𝑚𝑖𝑛𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒( 𝑛) 

(25) output: 𝑥0 ← 𝑏𝑉𝑎𝑙𝑢𝑒 

To demonstrate the functioning of the algorithm, an example is given in "Appendix 

2". In this example, modular numbers are not coprime two by two. 

The proposed solution model is applicable in the realization of the Silver-Pohlig-

Hellman algorithm without limiting conditions that must be complied with if the "Chinese 

Theorem" is applied to solve a system of congruent equations. 
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2.3 Conclusions. 

• A decision model allowing improvement of the divisibility score of a number when 

using the Miller Rabin algorithm in the process of generating prime numbers for 

cryptographic keys leads to an increase in the robustness of functioning of RSA-

based cryptographic systems. 

• A solution model allowing the application of Silver's Pohlig Hellman algorithm 

without limiting conditions can be used to reduce the number of iterations 

needed to achieve faster and more effective attack against RSA-based 

cryptographic systems and creates prerequisites for reducing the resilience of 

RSA-based systems. 

• Attacks on a single key do not allow the range of the attack. Attacks using an 

analytical approach are wide-ranging and allow compromising a specific 

cryptographic algorithm or a whole group of algorithms. 

CHAPTER THREE 

METHODOLOGY FOR THE USE OF KLEPTOGRAPHY IN RSA BASED 

CRYPTOGRAPHIC SYSTEM. 

According to the rules of public cryptography, the necessary conditions to 

achieve sufficient security are compliance with the standards when generating keys 

and the reliable and secure storage of the personal parts of each of them. The 

implementation of all this may not be the guarantor of the security of an RSA-based 

cryptographic system. Security can be compromised easily, provided that the creator 

of the means by which keys are generated has information allowing him to decompose 

the modular number 𝑁 with the speed approximately equal to real time operation, by 

applying kleptography [38]. 

In this chapter, mathematical foundations and solution model of a new idea of a 

kleptographic attack algorithm are laid out. An assessment of the feasibility and 

benchmarking with existing algorithms has been made. The degree of robustness from 

disclosure was analyzed and the technical parameters that characterize the proposed 

algorithm were determined. 

3.1 Mathematical foundations and model. 

The idea of using exact squares related to a composite number was first invented 

and proposed by Pierre de Fermat in 1643. Since then, it has been known that exact 

squares have an effective application in the process of decomposing compound 

numbers into multipliers. Using this knowledge, we will represent with formulas and 

graphically, some new points of view related to composite numbers and the 

relationship of exact squares with them.  

Let 𝑁 = 𝑝. 𝑞 = 𝑡2 + 𝑟 or 𝑁 𝑚𝑜𝑑 𝑡 = 𝑟, where 𝑡 = ⌊√𝑁⌋ и 𝑁 + 𝑅 = (𝑡 + 1)2. From this 

representation we can derive the following equations: 

 (𝑡 + 1)2 = 𝑡2 + 2𝑡 + 1 = 𝑁 + 𝑅 (18) 

 2𝑡 − 𝑟 = 𝑅 − 1 (19) 

The presentation of the number 𝑁 and the formulas derived so far can be 

visualized graphically in the following figures, where the number  𝑁 is depicted in gray 
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color and is represented as a rectangle whose face is a product of both sides: number  

𝑝 (in light yellow color) and number 𝑞 (in pale blue color). This graphical representation 

fully corresponds to the representation of a composite number 𝑁 = 𝑝. 𝑞.  

 
Fig. 6 

Graphical representation of the number 𝑵 as the product of 𝒑 and 𝒒 

Figure 7 illustrates graphically the relationship of the numbers 𝑡 (in pale green) 

forming a square with side 𝑡 + 1 and the numbers 𝑅 (pale orange) and 𝑟 (in dark blue). 

We will make a second representation of the composite number 𝑁, 𝑝 = 𝑡 + 𝑥 and 

𝑞 = 𝑡 − 𝑦, where 𝑝 > 𝑞 → 𝑥 > 𝑦 (figure 7), from which it follows that: 

 𝑁 = (𝑡 + 𝑥)(𝑡 − 𝑦) (20) 

 where: 𝑝 = (𝑡 + 𝑥) , 𝑞 = (𝑡 − 𝑦)    

 𝑁 = 𝑡2 + 𝑡𝑥 − 𝑡𝑦 − 𝑥𝑦 (21) 

 𝑁 − 𝑡2 = 𝑡(𝑥 − 𝑦) − 𝑥𝑦  (22) 

 𝑡(𝑥 − 𝑦) − 𝑥𝑦 = 𝑟 (23) 

 𝑡 =
𝑟 + 𝑥𝑦

(𝑥 − 𝑦)
 (24) 

 

 
Fig. 7 

Graphical representation of the mathematical dependence of numbers 𝑵, 𝒑, 𝒒 and 

𝒕, 𝒓, 𝑹, 𝒙, 𝒚 

From the equations presented so far, we can derive the following formulas: 

 𝑝 + 𝑞 = 2𝑡 + 𝑥 − 𝑦 (25) 

 𝑝 − 𝑞 = 𝑥 + 𝑦 (26) 

If we form a square with a side 
𝑝+𝑞

2
 and from its aria subtract the aria of square with 

a length of side 𝑡, we will get a difference, which we will denote by 𝑣 : (
𝑝+𝑞

2
)

2

− 𝑡2 = 𝑣, 

therefore (
𝑝+𝑞

2
)

2

= 𝑡2 + 𝑣. 
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By definition, 𝑁 is a modular key number for RSA, then this number is composite 

obtained by multiplying two primes 𝑝 и 𝑞, which in value are large numbers much 

greater than 2. Since they are prime numbers and greater than 2, they are odd in value, 

therefore their sum is divisible by 2 without residue and 
𝑝+𝑞

2
 is an integer. 

The area of the square with side 
𝑝+𝑞

2
 is larger than that of the square with side  𝑡, 

because by definition 𝑥 > 𝑦 (see equation 20 and by condition 𝑝 > 𝑞). Since 
𝑝+𝑞

2
 is larger 

in value than t we can write the equality: 

 
𝑝 + 𝑞

2
=  𝑡 + 𝑚 (27) 

Based on equations (25) and (27), the equation applies: 

 
2𝑡 + 𝑥 − 𝑦

2
= 𝑡 + 𝑚 (28) 

Simplifying (28) we obtain: 

 𝑥 − 𝑦 = 2𝑚 (29) 

For a better idea we will use the next two figures (8 and 9), which illustrate the 

relationships between the formulas. On these graphs, the number 𝑚 used in equations 

(27, 28, 29) is depicted in dark blue-gray, the number 𝑦 in pale orange and the number 

x in pale pink. 

If we denote by 𝑖 = 𝑦 + 𝑚 and consider Figure 9, where 3 areas with equal size are 

marked with blue color (3 rectangles colored with light red color and each with sides  

𝑞 and 𝑖 = 𝑦 + 𝑚), we can derive equation (30), which is a derivative of all described so 

far: 

 (𝑡 + 𝑚)2 − 𝑖2 = 𝑁  (30) 

 

Fig. 8 

Graphical representation of the mathematical dependence of numbers 𝑵, 𝒕, 𝒙, 𝒚 

and 𝒎, 𝒊 
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Fig. 9 

Graphical representation of the mathematical dependence between (𝒕 + 𝒎)𝟐 , 𝒊𝟐 

and number 𝑵  

If we represent 𝑚 = 𝑔 + 1 and substitute in equation (29) we get: 

 𝑔 =
𝑥 − 𝑦 − 2

2
 (31) 

Substituting 𝑚 in (30) we will derive: 

 (𝑡 + 𝑔 + 1)2 − 𝑖2 = 𝑁 (32) 

If we express 𝑖2 by 𝑖2 = (𝑡 + 𝑔 + 1)2 − 𝑁 and simplify we get an equation that 

expresses 𝑖 by 𝑔: 

 𝑖2 = (𝑡 + 1)2 + 2 . 𝑔 . (𝑡 + 1) + 𝑔2 − 𝑁 (33) 

From (18) we know that 𝑁 + 𝑅 = (𝑡 + 1)2, substituting(𝑡 + 1)2 − 𝑁 into (33) we obtain: 

 𝑖2 = 𝑔2 + 2 . 𝑔 . (𝑡 + 1) + 𝑅 (34) 

The conclusions we can draw from (32) and (34) are two: 1) at firmly set values of 

𝑡 and 𝑅, the value of 𝑁 depends on the magnitude of 𝑔; 2) we have a minimum value 

of 𝑔 when the difference between 𝑝 and 𝑞 is 2, then 𝑔 = 0. 

By definition, if we have a number 𝑁, we easily calculate 𝑡 and 𝑅, because we 

know from the formulas that the value of  𝑡 = ⌊√𝑁⌋ or 𝑁 𝑚𝑜𝑑 𝑡 = 𝑟 and 𝑅 = (𝑡2 + 1) − 𝑁. 

From what has been said, it follows that, if 𝑡 and 𝑅 are known quantities, then the 

decomposition of a complex number 𝑁 depends on finding an integer 𝑔 that satisfies 

both equations (32) and (34) at the same time. From the mathematical apparatus 

derived so far, it is true that the value of 𝑔 From the mathematical apparatus derived 

so far, it is true that the value of 𝑝 and 𝑞. 

In the approach proposed by Fermat, two numbers are sought the difference of 

squares to which it is equal to the number 𝑁. In the equations derived so far, these two 

numbers are equivalent to 𝑖 and sum 𝑡 + 𝑔 + 1 (see equation 32). From the approach 

thus used and the derived equations it is evident that these two numbers are directly 

dependent on the value of a number 𝑔 (see equations 32 and 34) and are significantly 

larger in value, which means that searching for a value of the number 𝑔 is a significantly 

faster process and would lead to decomposition of 𝑁 for a much smaller number of 

iterations. The number of numbers that can satisfy equations (32) and (34) depends on 
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the number of pairs of multipliers whose product is  𝑁. If 𝑁 is the product of two simple 

multipliers, then the value of 𝑔 satisfying these equations is only one. From the 

mathematical apparatus can be drawn another correct conclusion: with numbers  𝑁 

obtained by multiplying more than two simple multipliers, the smallest value of 𝑔𝑖 we 

will have if the difference 𝑝𝑖 − 𝑞𝑖 is the smallest one of all pairs 𝑝𝑖 and 𝑞𝑖 in to the set of 

integers which as a product are equal to 𝑁. 

Based on the created mathematical apparatus, an answer to the question "Is 

there a way for the value of 𝑔 that satisfies both equations to be reduced?" can be 

sought. The answer to this question is "YES". This can be achieved by multiplying 𝑁 by 

𝑛 = 𝑎. 𝑏 and if 
𝑎

𝑏
≈

𝑝

𝑞
, then for 𝑀 = 𝑁. 𝑛 = 𝑝. 𝑞. 𝑎. 𝑏 we will have 𝑔𝑀 < 𝑔𝑁. Even if the values 

of the ratios do not fully match (⌊
𝑎

𝑏
⌋ = ⌊

𝑝

𝑞
⌋), the value of 𝑔𝑀 can be zero. In other words, 

we will have a new larger composite number  𝑀 with factors 𝑎. 𝑝 ≈ 𝑏. 𝑞 , for which ⌊
𝑎.𝑝

𝑏.𝑞
⌋ ≈

𝑐, where 𝑐 ≪ 𝑞 < 𝑝 and 𝑔𝑀 < 𝑔𝑁.  

Given 𝑔𝑀 we can factorize 𝑀 into prime factors and thus calculate the values of 𝑝 

and 𝑞 by finding the greatest common divisor (GCD) between 𝑓 and 𝑁 where 𝑓 is a 

factor of 𝑀. The possible combinations for this factor are: 𝑓 = 𝑝. 𝑎, 𝑓 = 𝑝. 𝑏, 𝑓 = 𝑞. 𝑎 or 𝑓 =

𝑞. 𝑏. The conclusion is that if the factors 𝑝 and 𝑞 of 𝑁 generate a lower value of 𝑔, it is 

highly likely that by exhaustively searching for 𝑔, the number 𝑁 can be factored.  

From everything stated thus far, it can be concluded that ensuring the security of 

RSA-based cryptographic systems is not enough by just complying with the NIST's "SP 

800-56B" standard from 2020 and the ETSI's "TS 102 176-1 V2.0.0" standard from 2007. To 

remember, according to these standards: 

• 𝑝 − 𝑞 > 2𝑛𝐵𝑖𝑡𝑠 − 100 by NIST 

• 0.1 < |𝑙𝑜𝑔2𝑝 − 𝑙𝑜𝑔2𝑞| < 30 by ETSI 

Even if these conditions are met, if we obtain 𝑀 = 𝑛. 𝑁 with small values of 𝑎 and 𝑏, and 

𝑔𝑀 ≪ 𝑞 < 𝑝, we can quickly factor 𝑁 by using full exhaustion of 𝑛 combined with full 

exhaustion of 𝑔𝑀 if 𝑔𝑀 .  𝑛 ≪ 𝑞 < 𝑝. In other words, the "ratio" of 𝑝 and 𝑞 is extremely 

important for the security of RSA-based systems. The process of finding a balance 

between 𝑛 and the two factors of 𝑁 is called "Fusion of Number Balance" (FNB). The 

significance of the relationship between the two factors 𝑝 and 𝑞 of the modulus 𝑁 

involved in forming an RSA key and the practical use of the "Fusion of Number Balance" 

algorithm is demonstrated in the example provided in "Appendix 3." 

In conclusion of this point, it can be stated that "Synthesis of Numeric Balance" is 

not a universal algorithm for factoring numbers into prime factors. It can only be used 

to fully exhaust values for 𝑛 for composite numbers, where the relationship between the 

factors 𝑝 and 𝑞 allows it. However, it is a vivid example that the conditions for checking 

randomly generated prime numbers, as elements of RSA-based cryptographic system 

keys, must be revisited and an additional condition checking the magnitude of 𝑔 must 

be included. 

3.2 Practical Implementation of an RSA-based Kleptographic Algorithm. 

In order to clarify the degree of potential risk to the stability of public key based 

(RSA) cryptography systems, a variant of a Kleptography algorithm has been 

developed through the impact on cryptography primitives, as described in the 
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previous mathematical basis. Based on the investigation of its telemetric parameters, 

potential hidden functioning capabilities, etc., assessments of the level of security 

vulnerability are made that can be implemented in the event of its use.  

To eliminate the assumptions of weaknesses in the generation of prime numbers, 

an algorithm for their generation has been created. The result of the algorithm creates 

a random number that is tested for divisibility. The input parameter of the algorithm is 

the length in bits that the number should have. The pseudo code of the algorithm has 

the following form: 

Input: 𝒍 – needed bit length 

Output: 𝒑 – prime number 

(1) 𝑡 ← 2𝑙 

(2) 𝑧 ← 0 

(3) do 

(4) 𝑧 ← 𝑧 𝑠ℎ𝑙 8 + 𝑟𝑎𝑛𝑑𝑜𝑚𝐵𝑦𝑡𝑒 

(5) while 𝑧 > 𝑡 

(6) 𝑏 ← 𝑧 𝑠ℎ𝑟 (𝑏𝑖𝑡𝑙𝑒𝑛𝑔𝑡(𝑧) − 𝑙) 

(7) if 𝑏 𝑚𝑜𝑑 2 = 0 

(8) 𝑏 ← 𝑏 + 1 

(9) while 𝑏 𝑛𝑜𝑡 𝑝𝑟𝑖𝑚𝑒 

(10) 𝑏 ← 𝑏 + 2 

(11) output: 𝑝 ← 𝑏 

 

The algorithm for generating prime numbers doesn't rely on fast prime number 

generation principles and methods because most of them use a set of prime numbers 

that are smaller in value. This limits the set in which the final generated number falls. The 

proposed algorithm is iterative and the number of iterations required to find a prime 

number will be equal to 
(𝑝−𝑏)

2
 (according to the definition of variables in the pseudo 

code). This means that the execution complexity of this algorithm is the product of 
(𝑝−𝑏)

2
 

and the complexity of the algorithm used to check divisibility (such as the complexity 

of the Miller-Rabin primality test) 

For greater clarity and convenience, the idea for the kleptographical algorithm 

will be described schematically and algorithmically, which will facilitate subsequent 

evaluations and analyses. For brevity, the proposed algorithm is named 

"gBaseKleptoRSA". The meanings of the numbers in the descriptions will correspond in 

meaning to the meanings in the previous point. 

For the implementation of the gBaseKleptoRSA attack, the attacker possesses a 

secret key 𝑛. This key has a value 𝑛 = 𝑎. 𝑏, where 𝑎 and 𝑏 are mutually prime numbers 

(𝐺𝐶𝐷(𝑎 , 𝑏) = 1) and with a size greater than 232. The size of 𝑎 and 𝑏 is assumed to be 

grater then 232 because it is logical to use such pairs [𝑎, 𝑏] such that 𝑛 = 𝑎. 𝑏 has a size in 

bits that is relatively large enough to enable full exploitation for its revelation. The 

numbers 𝑎 and 𝑏 will serve to form a solid hidden relationship between the generated 

𝑁 factors. 
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The length of the key will be represented by 𝑘. The binary length of 𝑛 will be 

represented by 𝑙. To obtain the values of the factors for each kleptographic key we 

generate, we will use a randomly generated prime number 𝑢 with a binary size of 
𝑘−𝑙

2
. 

For each key, the value of 𝑢 is generated separately, not repeated, and not stored. We 

obtain the factors through the following calculations: 

𝑝 = 𝑁𝑒𝑥𝑡𝑃𝑟𝑖𝑚𝑒(𝑢. 𝑎) = 𝑃𝑟𝑖𝑚𝑒(𝑢. 𝑎 + 𝑟𝑝)  

𝑞 = 𝑁𝑒𝑥𝑡𝑃𝑟𝑖𝑚𝑒(𝑢. 𝑏) = 𝑃𝑟𝑖𝑚𝑒(𝑢. 𝑏 + 𝑟𝑞) 

This means that the value of 𝑝 is the next prime number greater than 𝑢 ∙ 𝑎, and for 

𝑞, it's the next prime number greater than 𝑢 ∙ 𝑏. We can calculate the maximum 

approximate size of the values of 𝑟𝑝 and 𝑟𝑞  using the formula for calculating the 

approximate number of primes less than 𝑥: 𝑥 ln 𝑥⁄ . 

Despite the fact that this formula does not give an exact result, but an 

approximate one, and years of research on the problem of determining the number of 

prime numbers up to the value of 𝑥 have not produced a result for computing with 

absolute accuracy, for our purposes we can use it. With its help, we obtain: 𝑟𝑝 ≈
𝑝

ln 𝑝
−

𝑢.𝑎

ln 𝑢.𝑎
 и 𝑟𝑞 ≈

𝑞

ln 𝑞
−

𝑢.𝑏

ln 𝑢.𝑏
. The values of 𝑟𝑝 and 𝑟𝑞 affect the rate of generation of 𝑝 and 𝑞. The 

approximate number of required checks for the divisibility of 𝑝 and 𝑞 will be 𝑟𝑝 . 𝑟𝑞 =  

number of primality tests. 

In this way, through the secret value of the number 𝑛, we will get the value of 𝑞𝑀 =

0 for the number 𝑀 = 𝑛. 𝑁. Thus, the attacker must perform the following calculations: 

𝑀 = 𝑛. 𝑁 

𝑡𝑀 = ⌊√𝑀⌋ 

𝑖𝑀 =  √(𝑡𝑀 + 1)2 − 𝑀 

𝑓 = 𝑡𝑀 − 𝑖𝑀 + 1 

𝑝 = 𝐺𝐶𝐷(𝑓, 𝑁)   𝑞 = 𝑁 𝑑𝑖𝑣 𝑝 

The used public exponent in the generated key is an input value, because by 

standard it should be a small prime number with the minimum number of bits equal to 

1. In practice, the most commonly used value for the public exponent of an RSA key is:  

𝑒 = 65537𝑑𝑒𝑐 = 100001𝑏𝑖𝑛. 

The pseudo code of the proposed algorithm is: 

Input: 𝒌 – bit length of 𝑵  

𝒆 – public key exponent 

(𝒂, 𝒃: 𝒏 = 𝒂. 𝒃) – attacker’s private key 

Output: 𝒑, 𝒒 – prime number 

𝑵 – RSA modulo number 

𝒅 – user’s private key 

(1) 𝑛 ← 𝑎 .  𝑏 

(2) 𝑙 ← 𝐵𝑖𝑡𝑆𝑖𝑧𝑒(𝑛) 

(3) 𝑢 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑃𝑟𝑖𝑚𝑒 (
𝑘 − 𝑙

2
) 

(4) 𝑝 ← 𝑁𝑒𝑥𝑡𝑃𝑟𝑖𝑚𝑒(𝑢. 𝑎) 

(5) 𝑞 ← 𝑁𝑒𝑥𝑡𝑃𝑟𝑖𝑚𝑒(𝑢. 𝑏) 

(6) if  (𝑝 − 1) . (𝑞 − 1) 𝑚𝑜𝑑 𝑒 = 0  

(7) goto: (3) 
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(8) if 𝑝 < 𝑞 

(9) 𝑧 ← 𝑝 

(10) 𝑝 ← 𝑞 

(11) 𝑞 ← 𝑧 

(12) 𝑁 ←  𝑝 .  𝑞 

(13) 𝑑 ←  𝑒−1 𝑚𝑜𝑑 𝜑(𝑁) 

(14) output: 𝑝, 𝑞, 𝑁, 𝑑 

In order for the proposed algorithm to function properly, a divisibility check has 

been included, in which the values of 𝜑(𝑝) and 𝜑(𝑞)  are tested for divisibility by the 

public exponent 𝑒. This is a mandatory requirement because if they are not mutually 

prime, it is impossible to calculate the private key, thus the Diophantine equation: 

𝑒 . 𝑑 − 𝜑(𝑁). 𝑡 = 1 

will not have solution because 𝐺𝐶𝐷(𝜑(𝑁), 𝑒) > 1. 

Based on the described mathematical apparatus, we will use pseudo code to 

describe the algorithm by which the attacker will decompose the modular number 𝑁: 

Input: 𝑵 – RSA modulo number 

𝒆 – public key exponent 

 (𝒂, 𝒃: 𝒏 = 𝒂. 𝒃) – attacker’s private key 

Output: 𝒑, 𝒒 – prime number 

𝒅 – user’s private key 

(1) 𝑀 ← 𝑛. 𝑁 

(2) 𝑡 ← ⌊√𝑀⌋ 

(3) 𝑖 ←  √(𝑡 + 1)2 − 𝑀 

(4) 𝑝 ← 𝐺𝐶𝐷(𝑡 − 𝑖 + 1, 𝑁) 

(5) 𝑞 ← 𝑁
𝑝⁄  

(6) 𝑑 ← 𝑒−1 𝑚𝑜𝑑 𝜑(𝑁)  

(7) output: 𝑝, 𝑞, 𝑑 

The algorithm was implemented in a program code and through the created 

software application, over 2000 keys were generated with a size of 2048 bits. Based on 

logical analysis and evaluation of the results, it was determined that in a not small part 

of the generated keys, 74.8%, the value of the most significant bit is 0. In these cases, 

the actual key size does not meet the requirements of the standards and is not 2048 

bits. This weakness of the algorithm was the reason to create a new algorithm with a 

different principle of using generated prime numbers, but with the mathematical and 

algorithmic foundation of the cryptographic attack method retained. This version of 

the algorithm is referred to as "gBaseKleptoRSA2". 

The new method does not rely on just one pair of 𝑎 and 𝑏 multipliers for one value 

of 𝑛, but generates a set of pairs 𝑎𝑖 and 𝑏𝑖. Thus, the process is divided into two stages. 

In the first stage, a basic table is generated, which has constant values for its elements. 

This allows it to be part of a hardware program code or pre-defined constants in a 
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software program. It represents a set of options for the attacker's keys and allows for 

rapid modular number 𝑁 decomposition for every key generated through 

"gBaseKleptoRSA2". The description of the semantics of the two stages is as follows: 

• In the first stage, using the input parameters [𝑎0,𝑏0], a set 𝑆 = {[𝑎𝑖, 𝑏𝑖], 𝑖 ∈ 0. .80 } is 

generated, which is done using a pre-defined 9 × 9  matrix 𝑅𝑥,𝑦 = [𝑙, ℎ].  

[

𝑅0,0 = [0,0] ⋯ [0,4][0, −1] ⋯ 𝑅0,8 = [0, −4]

⋮ ⋱ ⋮
𝑅8,0 = [−4,0] ⋯ [−4,4][−4, −1] ⋯ 𝑅8,8 = [−4, −4]

] 

The matrix specifies the law through which the remaining elements of the set 𝑆 

are generated using binary operations, left shifts (𝑠ℎ𝑙), and right shifts (𝑠ℎ𝑟), 

starting from 𝑆[𝑎0,𝑏0] and the following operations: 

𝑥 =  𝑖 𝑑𝑖𝑣 9 

𝑦 =  𝑖 𝑚𝑜𝑑 9 
𝑎𝑖 =  𝑎0 𝑠ℎ𝑙 𝑅𝑥,𝑦→ 𝑙  𝑖𝑓 𝑅𝑥,𝑦→𝑙 ≥ 0 

𝑎𝑖 =  𝑎0 𝑠ℎ𝑟 𝑅𝑥,𝑦→ 𝑙  𝑖𝑓 𝑅𝑥,𝑦→𝑙 < 0 

𝑏𝑖 =  𝑎0 𝑠ℎ𝑙 𝑅𝑥,𝑦→ ℎ  𝑖𝑓 𝑅𝑥,𝑦→ℎ ≥ 0 

𝑏𝑖 =  𝑎0 𝑠ℎ𝑟 𝑅𝑥,𝑦→ ℎ  𝑖𝑓 𝑅𝑥,𝑦→ℎ < 0 

This creates the possibility to access at least one element from 𝑆, such that if we 

have the following calculation for a modular number: 𝑁 = 𝑎𝑖 .  𝑏𝑖 . 𝑢2 =

(𝑎𝑖 .  𝑢) . (𝑏𝑖 .  𝑢) = 𝑝  .  𝑞, we obtain one for which the most significant bit of the 

specified key length is equal to 1, satisfying the standards. 

• In the second stage, a simple number 𝑢 for a specific RSA key is generated. This 

𝑢 is randomly generated, used only once and not stored. We start searching and 

calculate: 

𝑝𝑖 = 𝑢. 𝑎𝑖 

𝑞𝑖 = 𝑢. 𝑏𝑖 

𝑁 = 𝑝𝑖  .  𝑞𝑖 

The search starts and the following calculations are made: the first index 𝑖 for 

which we get 1 as the most significant bit of 𝑁 breaks the search and we perform 

the following calculations. 

𝐷𝑎 = 𝑟𝑎𝑛𝑑𝑜𝑚(1. .97) 𝑠ℎ𝑙 𝑑𝑎 

𝑝 = 𝑁𝑒𝑥𝑡𝑃𝑟𝑖𝑚𝑒(𝑢. (𝑎𝑖 + 𝐷𝑎))  

𝐷𝑏 = 𝑟𝑎𝑛𝑑𝑜𝑚(1. .97) 𝑠ℎ𝑙 𝑑𝑏 

𝑞 = 𝑁𝑒𝑥𝑡𝑃𝑟𝑖𝑚𝑒(𝑢. (𝑏𝑖 + 𝐷𝑏)) 

𝑁 = 𝑝  .  𝑞 

𝑑 = 𝑒−1 𝑚𝑜𝑑 𝜑(𝑁) 

The algorithm implementing the steps of the first stage for generating a table of 

pairs [𝑎𝑖,𝑏𝑖]  is described with the following pseudocode: 

Input: 𝑹𝒙,𝒚 – matrix 

 [𝒂𝟎,𝒃𝟎] – initial base value of S 

Output: 𝑺 = {[𝒂𝒊, 𝒃𝒊], 𝒊 ∈ 𝟎. . 𝟖𝟎 } 

(1) 𝑆[0]. 𝑎 ← 𝑎0, 

(2) 𝑆[0]. 𝑏 ← 𝑏0, 

(3) for each 𝑖 ∈ 1 . . 80 
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(4) 𝑥 ← 𝑖 𝑑𝑖𝑣 9 

(5) 𝑦 ← 𝑖 𝑚𝑜𝑑 9 

(6) if 𝑅[𝑥, 𝑦]. 𝑙 ≥ 0 

(7) 𝑆[𝑖]. 𝑎 ←  𝑆[0]. 𝑎  𝑠ℎ𝑙 𝑅[𝑥, 𝑦]. 𝑙 

(8) else 

(9) 𝑆[𝑖]. 𝑎 ←  𝑆[0]. 𝑎  𝑠ℎ𝑟 𝑅[𝑥, 𝑦]. 𝑙 

(10) if 𝑅[𝑥, 𝑦]. ℎ ≥ 0 

(11) 𝑆[𝑖]. 𝑏 ←  𝑆[0]. 𝑏  𝑠ℎ𝑙 𝑅[𝑥, 𝑦]. ℎ 

(12) else 

(13) 𝑆[𝑖]. 𝑏 ←  𝑆[0]. 𝑏  𝑠ℎ𝑟 𝑅[𝑥, 𝑦]. ℎ 

(14) output: 𝑆 

The steps described in the pseudo code of the following algorithm are executed 

to generate the key: 

Input: 𝒌 – bit length of 𝑵  

𝒆 – public key exponent 

𝑺 = {[𝒂𝒊, 𝒃𝒊], 𝒊 ∈ 𝟎. . 𝟖𝟎 }; 𝑑𝑎, 𝑑𝑏 ∈ 1. .24 

Output: 𝒑, 𝒒 – prime number 

𝑵 – RSA modulo number 

𝒅 – user’s private key 

(1) 𝑙 ← 𝐵𝑖𝑡𝑆𝑖𝑧𝑒(𝑆[0]. 𝑏) 

(2) 𝑢 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑃𝑟𝑖𝑚𝑒((𝑘 2⁄ ) − 𝑙) 

(3) 𝑚 ← 𝑟𝑎𝑛𝑑𝑜𝑚(1. .80) 

(4) for each 𝑖 ∈ 1 . . 80 

(5) 𝑓 ← (𝑚 + 𝑖) 𝑚𝑜𝑑 80 

(6) 𝑑 ← 𝑢2 .  𝑆[𝑖]. 𝑎 . 𝑆[𝑖]. 𝑏 

(7) if 𝑏𝑖𝑡𝑙𝑒𝑛𝑔𝑡ℎ(𝑑) = 𝑘 

(8) 𝐷𝑎 ← 𝑟𝑎𝑛𝑑𝑜𝑚(1. .97) 𝑠ℎ𝑙 𝑑𝑎  

(9) 𝑝 ← 𝑁𝑒𝑥𝑡𝑃𝑟𝑖𝑚𝑒(𝑢. (𝑆[𝑖]. 𝑎 + 𝐷𝑎)) 

(10) 𝐷𝑏 ← 𝑟𝑎𝑛𝑑𝑜𝑚(1. .97) 𝑠ℎ𝑙  𝑑𝑏  

(11) 𝑞 ← 𝑁𝑒𝑥𝑡𝑃𝑟𝑖𝑚𝑒(𝑢. (𝑆[𝑖]. 𝑏 + 𝐷𝑏)) 

(12) if 𝑝 < 𝑞 

(13) 𝑧 ← 𝑝 

(14) 𝑝 ← 𝑞 

(15) 𝑞 ← 𝑧 

(16) 𝑁 ←  𝑝 .  𝑞 

(17) 𝑑 ←  𝑒−1 𝑚𝑜𝑑 𝜑(𝑁) 

(18) output: 𝑝, 𝑞, 𝑁, 𝑑 

The examples of the result from executing the key generation algorithm using 

gBaseKleptoRSA2 are given in tabular form in "Appendix 4".  
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The algorithm used by the attacker to recover the private key generated by 

gBaseKleptoRSA2 has the following iterations: 

Input: 𝑵 – RSA modulo number 

𝒆 – public key exponent 

𝑺 = {[𝒂𝒊, 𝒃𝒊], 𝒊 ∈ 𝟎. . 𝟖𝟎 }; 𝑑𝑎, 𝑑𝑎 ∈ 1. .24 

Output: 𝒑, 𝒒 – prime number 

𝒅 – user’s private key 

(1) for each 𝑖 ∈ 0 . . 80 

(2) for each 𝑤𝐿 ∈ 1 . . 97 

(3) 𝑎𝑉 ← 𝑆[𝑖]. 𝑎 +  𝑤𝐿 𝑠ℎ𝑙  𝑑𝑎 

(4) for each 𝑤𝐻 ∈ 1 . . 97 

(5) 𝑏𝑉 ← 𝑆[𝑖]. 𝑏 +  𝑤𝐻 𝑠ℎ𝑙 𝑑𝑏 

(6) 𝑛 ← 𝑎𝑉 .  𝑏𝑉 

(7) 𝑀 ← 𝑛. 𝑁 

(8) 𝑡 ← ⌊√𝑀⌋ 

(9) 𝑖 ←  ⌊√(𝑡 + 1)2 − 𝑀⌋ 

(10) if 𝑖2 =  (𝑡 + 1)2 − 𝑀 

(11) 𝑓 ←  𝑡 − 𝑖 + 1 

(12) 𝑞 ←  𝐺𝐶𝐷(𝑓, 𝑁) 

(13) 𝑝 ← 𝑁
𝑞⁄  

(14) 𝑑 ← 𝑒−1 𝑚𝑜𝑑 𝜑(𝑁)  

(15) output: 𝑝, 𝑞, 𝑑 

The algorithm only outputs a result if the input is a number 𝑁 generated using 

gBaseKleptoRSA2 with a table 𝑆 as the input parameter during generation. 

3.3 Benchmarking and evaluation of detectability 

Information about topics related to kleptography is limited compared to other 

areas in cryptography. This issue is still not deeply explored compared to the rest of the 

theory regarding the protection of information through encryption. For this reason, the 

comparative analysis of the topic of kleptography presented in this chapter is focused 

on publicly described kleptographic algorithms attacking RSA. The analysis of existing 

kleptographic algorithms is focused on those that are claimed to have properties and 

functionality that make them practically applicable.  

In order to make the tests necessary for analysis comparable, they are performed 

on the same hardware computer configuration: CPU i5 10th generation (i5-1035G4) 

with 8 cores, maximum frequency of 3.7GHz, and 16GB of RAM. During the execution 

of the tests, the processor load was in the range of 60% to 70%. 

All kleptographic algorithms that have been proposed and created with the 

purpose of attacking RSA are based on the Young and Yung variant and in most 

publications, they refer to it or their code execution is very similar to their algorithm. For 
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this reason, in the dissertation work, only the Young and Yung algorithm is described 

and it is analyzed for practical-applicability evaluation. The following analysis can be 

taken as covering all modifications and developments of kleptographic algorithms for 

RSA, because the lines of pseudo-code, which the analysis is directed to, in the Young 

and Yung algorithm, are part of most proposed algorithms in the free internet space, 

even those created with the goal of improving specific elements of the algorithm.  

Let's examine and analyze the following lines from Young and Yung's algorithm.: 

(1) random  𝑠 ∈ 𝑧𝑝−1
× , 𝑏𝑖𝑡𝑠𝑖𝑧𝑒(𝑠) ≈ 𝑘/2 

(2) 𝑝 ← ℎ𝑎𝑠ℎ (𝑠) 

(3) if 𝑝 𝑖𝑠 𝑛𝑜𝑡 𝑝𝑟𝑖𝑚𝑒 or 𝐺𝐶𝐷(𝑒, 𝑝 − 1) ≠ 1 

(4) goto (1) 

1) In order to implement it, a hash function with a result whose binary length must be 

equal to or greater than half the length of the key (line (1): 𝑘/2) is used. If a 2048-

bit key needs to be generated, according to this requirement, we must use a hash 

function with a result of at least 1024 bits in size. There are not many algorithms 

that offer such a length of result. We can only mention two SHA 3 and Skein, which, 

in addition to covering the requirement for the length of the hash result, are also 

robust and reliable hash algorithms. This is the other requirement that is specified 

as a condition in the Young and Yung algorithm that we are analyzing. If it is 

necessary to generate a larger key, with 4096 bits for example or larger, in such a 

case, the proposed kleptographic algorithm cannot function because there are 

no such hash functions that return results with such dimensions (2048 bits and 

larger). 

2) According to rule (3), if the result of the hash of arbitrary data is not a prime 

number or 𝐺𝐶𝐷(𝑒, 𝑝 − 1) ≠ 1, we return to step (1). The probability of the process 

seriously slowing down in this part of the algorithm is high. Two reasons justify this 

statement: the slow execution of hash algorithms that need to calculate the hash 

of data with the desired length, and secondly, the probability of hitting a prime 

number in the range of these large numbers is not high enough and this will take 

several iterations. The time to generate a key is an important indicator. If the 

necessary time to generate a key deviate significantly from the average-statistical 

time in the standard algorithms for generating RSA keys (those without 

Kleptography), it would be a noticeable sign of malfunction. In the presence of 

such suspicions, the presence of Kleptography can be assumed.  

Let's look at another part of Young and Yung's proposed kleptographic algorithm: 

(7) solve:    𝑐𝑜𝑛𝑐𝑎𝑡(𝑐, 𝑅𝑁𝐷)) = 𝑝. 𝑞 + 𝑟, 𝑏𝑖𝑡𝑠𝑖𝑧𝑒(𝑞) ≈ 𝑘/2 

(8) if 𝑞 𝑖𝑠 𝑛𝑜𝑡 𝑝𝑟𝑖𝑚𝑒 or 𝐺𝐶𝐷(𝑒, 𝑞 − 1) ≠ 1 

(9) go to (1) 

On line (7) it is necessary to solve an equation where on the left is a number formed 

by a binary concatenation of 𝑐 and random data obtained on line (5): 

(5) random 𝑅𝑁𝐷, 𝑏𝑖𝑡𝑠𝑖𝑧𝑒(𝑅𝑁𝐷) ≈ 𝑘/2 



32 | 36 

The value of 𝑐 is extremely important because it represents the result of encrypting 𝑠 

(obtained in step (1)), with the attacker's public key. As we have already noted, 

through 𝑠, the multiplier 𝑝 is obtained. The main idea of the attack is to obtain 𝑝 and 

then 𝑞 by recovering 𝑠. If we look again at step (7), the only parameter that can be 

changed is 𝑅𝑁𝐷, and the goal of solving the equation is to find a simple number 𝑞 with 

an approximate length of 𝑘/2. For this, iterations are necessary to obtain such a value 

of 𝑟, so that: 𝑞 =
𝑐𝑜𝑛𝑐𝑎𝑡(𝑐,𝑅𝑁𝐷))−𝑟

𝑝
 

To avoid overloading the algorithm, it is expected that the value of 𝑟 is reasonably 

small. If due to a high value of 𝑟 the process continues, as we have already explained, 

this will be a noticeable sign of malfunctioning. If 𝑟 is of low value and we get a 

satisfactory result for 𝑞, it would mean that it is very likely that 𝑝 is very close in value to 

𝑞. If this is the case, it means that the difference 𝑥 − 𝑦 (see Chapter 3, equation (29)) 

will be small, which in turn means that we will have a composite number with a small 

value of 𝑔, and as already demonstrated in the first point of this chapter, such 𝑁 will be 

easily factorizable. 

The second metric for the analysis of the Young and Yung algorithm is security. It 

includes an assessment of the possibility of information extraction from the secret 

channel by those who do not have the attacker's key. The analysis results show that the 

algorithm provides a secure channel for the protection of information passing through 

it. The difficulty of determining the secret parameter used to form 𝑝 is equivalent to 

solving a problem for computing the discrete logarithm. 

The main conclusion from the presented is that the variants of the Young and Yung 

algorithms and all their modifications are practically not applicable for implementation 

in hardware modules (HSM, smart cards, etc.) or software libraries. The main reason for 

this will be the illogically longer period of generating an RSA key compared to classical 

cryptographic algorithms, in which a kleptographic attack is not included. 

To assess the threat to the stability of RSA-based cryptographic systems from the 

use of gBaseKleptoRSA2, an analysis was performed that included a series of tests 

similar to the analysis for the Young and Yung algorithm. To perform the tests, a software 

application was created that generates RSA keys using the gBaseKleptoRSA2 

kleptographic algorithm. This was executed on the computer configuration considered 

to be the base in order to achieve an objective analysis. 

In the first part of the analysis, tests were performed in order to evaluate the 

generation time for RSA keys with a size of 2048 bits. The average key generation time 

measured was ≈1.98 seconds. This is a commensurate key generation time of this kind 

compared to algorithms that do not use a kleptographic attack.  

The second metric by which gBaseKleptoRSA2 was tested is the security of the 

leakage channel to the attacker so that he can implement a kleptographic attack to 

restore the private key. In order to be able to determine the unambiguous presence of 

an attack, it is necessary to restore in whole or in part the table of secret parameters 

(keys) of the attacking implementation gBaseKleptoRSA2.  

The process of this analysis requires an estimate of pairs of modular number 𝑁 

multipliers that are involved in forming a different key. For example, examine 𝑝𝑖 from 

one key with 𝑝𝑗 from another or a pair of 𝑝𝑖 with 𝑞𝑘 (𝑘 ≠ 𝑖 ≠ 𝑗). If, as a result of such a 

study of pairs of multipliers, a number 𝑤 is found for which: 
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 𝑤 = 𝐺𝐶𝐷(𝑥 − 𝑟𝑥, 𝑦 − 𝑟𝑦), 𝑤 > 232 (35) 

it can be assumed that such 𝑤 is a potential member of 𝑆. 

Using the specified basic constants for implementing gBaseKleptoRSA2 in the 

previous point, a full combination will require us 877,972,608 possible number 

combinations for research. The number of keys that need to be generated to provide 

this amount of numbers is 438,986,304. With an average key generation time of 1.98 

seconds, this makes 10,060.10 days (≈27.56 years). If a supercomputer with 500 Intel(R) 

Xeon(R) CPU E5-2660 v2 2.20GHz processors is used in the key generation process, the 

key generation process will take 1,100 days. Expressed as a financial investment at an 

average of $1,250 per cloud HSM (price for IBM or AWS per month) or $4.85 per hour 

(Microsoft Cloud HSM), it is an investment of over $413,000. In order to achieve results 

from the analysis of discovering kleptography gBaseKleptoRSA2, time is also needed to 

calculate using the equation (35) for every number from all 877,972,608 numbers (𝑌). 

During the analysis for implementation of the search, we use one reference number 𝑥, 

with which we perform calculations with each number from the set of 𝑌, in order to 

discover 𝑤 ≥ 232. The average calculation time using the specified configuration with 

the i5 processor is 7.39 minutes, which equals approximately 12,344.40 years. If a parallel 

calculation form is used with the help of the Intel(R) Xeon(R) CPU E5-2660 (500 CPU), it 

would take approximately 6.17 years. 

The increase in the interval of values in which 𝐷𝑎 and 𝐷𝑏 are selected leads to an 

increase in the difficulty of detecting kleptography of this type. Tests have shown that 

changing the possible set of values for 𝐷𝑎 and 𝐷𝑏 from 1 . . 97 to 1 . . 171 and 𝑑𝑎,𝑑𝑏 ∈ 64  

increases the time to break 𝑁 (for a size of 2048 bits) by less than 10 seconds, but the 

increase in the minimum number of numbers to be studied increased by 9,815,261,184, 

which requires over 11 times more time (~69 years) for key generation and searching 

for a possible 𝑤 that proves the existence of gBaseKleptoRSA2. 

Another important feature of using gBaseKleptoRSA2 is that when generating keys 

with different lengths, the same table 𝑆 can be used. 

If we summarize it about the proposed attack gBaseKleptoRSA2 we can say: 

• Applicable at different key lengths 

• Difficult to be detected 

The generalizations made may be the basis of the claim that gBaseKleptoRSA2 is 

an extremely dangerous attack tool that can have a serious impact on the resilience 

of RSA-based cryptographic systems. 

From what has been said so far, an important question arises: is it possible that 

there is an attack with a similar mechanism that is currently operating in hardware tools 

or software libraries that are used in practice. This requires an analysis of already existing 

cryptographic systems aimed at the RSA key generation process. 

At the end of this dissertation work, attention was drawn to a study by a group of 

Czech researchers from Masaryk University [57]. The results published by them led to the 

conclusion that some of the technical tools and software libraries have weaknesses in 

the key generation process or there are forms of kleptography. Their study covers 38 

key generation tools, including 19 open-source software libraries, 3 commercial 

software products, and 16 hardware tools.  
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In this final part of the dissertation work, it is clearly demonstrated the reasons that 

lead to the need to create a tool for studying and evaluating the weaknesses in the 

generation of RSA keys. This tool should have functionality for evaluating and 

identifying generated weak keys and for searching for signs of embedded 

kleptography. 

3.4 Conclusions. 

From the content of the third chapter of the dissertation, the following conclusions 

can be formulated: 

• The standards in the field of cryptography related to the creation of RSA 

cryptographic keys need to be expanded. The conditions that need to be met 

during the generation of the pairs of prime numbers that will be used to form the 

key must be expanded. It is necessary to include a condition for evaluating the 

size of the ratio between the prime numbers 𝑝 and 𝑞 that form the modulo 𝑁. 

• The mathematical foundations that serve for the functioning of RSA give the 

possibility, under certain conditions, to create a mechanism for implementing a 

cryptographic attack that is difficult to detect. This directly affects the negative 

aspect of the degree of resilience of the most widely used algorithm in the field 

of public cryptography, RSA. 

• In order to achieve sufficient levels of security in RSA-based cryptographic 

systems, it is of utmost importance to develop technical and software tools that 

allow for fast, inexpensive, and accessible assessment of the presence of 

kleptography. 

CONCLUSION 

The development of public cryptography is a process where the pace of 

appearance of new mathematical foundations and encryption algorithms is not high 

and the speed of implementation in practical use is extremely low. This is mainly due to 

the fact that it takes time to test and study possible and underestimated assumptions 

for creating mathematical, logical and algorithmic vulnerabilities. But with even slower 

pace, developments are emerging that aid in the deeper testing and checking for the 

stability of cryptographic systems. Only such developments are capable of providing 

a toolset for creating a higher-quality product in the form of cryptographic protection 

tools. 

The development of technology is a high-speed growth process that creates a 

basis for increasing communication opportunities of machine-to-machine and human-

to-human types, leading to the need for the existence of larger and larger amounts of 

sensitive information. This requires the use and application of reliable and functional 

secure cryptographic protection systems. The increasing amounts of information, 

digitization, and technological progress will attract more and more those who want to 

exploit the weaknesses of the systems for their own benefit. 

The creation of a solution model that allows for improvement of the quality 

assessment of generated keys for RSA-based cryptographic systems through fast and 

deterministic algorithms for evaluating the primality of numbers leads to an increase in 

the stability of the operation of such systems.  
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The use of the basic mathematical foundations on which modern public 

cryptography is built is a prerequisite for it to be secure in the rapidly evolving 

computational and quantum technologies. The risk to the security of RSA-based 

cryptographic systems exists, and the emergence of solution models that offer the 

possibility of increasing RSA attack performance exacerbates this risk. Optimizing 

existing attack algorithms using such models increases the speed of attack, which 

reduces the stability of public key cryptographic systems.  

The model of the kleptographic attack described in the dissertation demonstrates 

the real danger to the resilience of cryptographic systems using RSA. Based on the 

results of the analysis and tests conducted, it can be assumed that current standards 

regulating the generation of RSA keys, which are widely used in practice, probably 

need to include additional verification conditions to reduce the likelihood of 

kleptography. This necessity stems from the fact that this cryptographic algorithm is the 

most widespread and used in practice. According to the statistics of the organization 

for transparency of digital certificates as of 2022, its use exceeds 75%. This necessity is 

further exacerbated by numerous incidents of vulnerabilities discovered in both 

hardware solutions for generating RSA keys and a significant number of software 

solutions used for such purposes. 

The main conclusion that can be drawn from the dissertation work is that public 

cryptography will continue to develop and be widely applied, but in order to be most 

beneficial to society, the possibilities of its compromise need to be reduced to a 

minimum through the use of methods for full-scale attacks against the public key 

generation processes. 

The efforts, knowledge, and data gathered during the development of the 

dissertation will be used for the purposes of future work related to creating solutions 

models in the following areas: 

• Enhancement of the stability and reliability of key generation used in public 

cryptography. 

• Qualitative and rapid assessment of the presence of implanted 

kleptography in systems that use public cryptography. 

• Creation of models that will serve as a foundation for the creation of an 

algorithmic base for future post-quantum era work. 

Achieved results 

The following scientific and practical results were achieved in order to achieve the 

stated goal of the dissertation and carry out the related tasks: 

1. In the first point of the second chapter, a solution model is proposed that allows 

for increasing the reliability of the divisibility assessment result as an addition to 

the widely used Miller-Rabin algorithm. This model creates the possibility of 

achieving a deterministic result without reducing the execution speed 

possessed by the Miller-Rabin algorithm. 

2. In the second point of a second chapter a new model of solving systems of 

congruent equations is proposed, in which no limiting conditions exist for the 

model to be executable. The lack of limiting conditions distinguishes it from the 

algorithms known in practice, such as that of the "Chinese Theorem" and allows 

solutions to be achieved without the need for the numbers with which it is 
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calculated by module to be coprime. The use of this model in addition to the 

RSA attack algorithm proposed by Pohlig-Hellman enhances the performance 

of its implementation. 

3. In the third chapter of the dissertation, a mathematical apparatus and a 

practical solution is presented, which allows the creation of a kleptographic 

algorithm for attacking RSA-based cryptographic systems. Comparative 

analyses and assessment of how kleptographic algorithms of this type threaten 

the resilience to functioning of systems using RSA. These results raise a question 

for consideration related to the sufficiency of the conditions in the composition 

of the applied standards relating to the assessment of the quality of a 

generated RSA key. 
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